Chapter 2

NATURAL NUMBERS (counting numbers)
1, 2, 3, 4, 5,...

WHOLE NUMBERS
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

INTEGERS...-3, -2, -1, 0, 1, 2, 3,...

RATIONAL NUMBERS Integers, Repeating and ending Decimals, and Fractions
-3, -2, $\frac{7}{8}$, 0, 3, 5.7, 4.33333...

IRRATIONAL NUMBERS
Decimals that don’t repeat or end. We don’t know exactly where they are on the number line. Like radicals, π, e, 1.235698425624... there is no pattern.

REAL NUMBERS
All of the previous numbers

- **RATIONAL**
- **INTEGERS**
- **WHOLE NUMBERS**
- **NATURAL**
- **IRRATIONAL**

So all natural numbers are whole numbers, all whole numbers are integers, all integers are rational, and all rational are real. The real numbers are all the numbers on the real number line.

List all of the numbers that are:
1) whole numbers
2) Integers
3) Irrational
4) Rational
5) Real
Absolute Value: Distance from Zero

\[|1 - 2| \quad |5| \]

\[\frac{1}{2}, 0, \frac{3}{2} \quad 0, 5, \frac{3}{2} \]

a) \(| -3| \)
\(3 \)

b) \(| -3| + |4| \)
\(3 + 4 \)

\(\frac{7}{2} \)

c) \(| 4 - 2| \)
\(2 \)

Opposite: The number the same distance from zero on the opposite side. CHANGE SIGN

\[-(\quad)\]

\[\quad \longrightarrow \quad \longrightarrow \]

a) \(- (4) \)

b) \(- (5) + (2) \)

c) \(- (\frac{3}{2}) \)

d) \(- |7| \)

Give me some real life things that we can assign negative numbers to.

Overdraft, debt, down, below, below sea level, below 0

Inequalities

less than

\(<, > \quad \leq \quad \geq \quad \rangle \quad \langle \)

Give me a phrase using less than and one using greater than

\[= \quad \leq \quad \geq \quad \neq \]

-4 < 4
17 < 15
3 = 3

\[-5 \quad \leq \quad -5 \quad -5 \quad \leq \quad 5 \quad -6 \quad \leq \quad -(-6) \]

\[-5 < 5 \quad -5 < 5 \quad 0 < 6 \]
Negative numbers can be traced back to the Chinese between 200 B.C. and 200 A.D. Mathematicians at first found negative numbers ugly and unpleasant, even though they kept cropping up in the solutions of problems.

You owe $5 on your credit card bill. You pay off $3 of it. Therefore, you still owe $2.

\[-5 + 3 = -2\]

From the following sentence you can see that \(-5 + 3 = -2\)

\[\bullet \quad -5 + 3 = -2\]

Adding and Subtracting Integers

<table>
<thead>
<tr>
<th>Different signs (you are paying off your cards) (one -)</th>
<th>Same signs (you owe a lot of money) (two - or no -)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - 5 = 4 + (-5)</td>
<td>-4 - 5 = -4 + (-5)</td>
</tr>
<tr>
<td>a) larger number decides the sign</td>
<td>a) add</td>
</tr>
<tr>
<td>(in this case the 5 is larger than 4 so it’s -)</td>
<td>b) keep the sign</td>
</tr>
<tr>
<td>b) subtract the smaller from the larger.</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>-4 - 5 = -9</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

* 3 - (-4) = 3 + 4 opposite of subtract is add

<table>
<thead>
<tr>
<th>-3 + 5</th>
<th>2 - 3</th>
<th>-7 + (-2)</th>
<th>-3 + 5</th>
<th>-2 - 3</th>
<th>-7 + (-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
ADDING INTEGERS

First, we will see how to add integers on the number line; then, we will learn rules for working the problems without using a number line.

EXAMPLE 1: \ Add: \ (-3) + 7

Step 1: The first integer in the problem tells us where to start. Find the first integer, \(-3\), on the number line.

\[\begin{array}{cccccccc}
 & & & & & & & \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

Step 2: \(-3) + 7\) The second integer in the problem, \(+7\), tells us the direction to go, positive (toward positive numbers), and how far, \(7\) places. \(-3) + 7 = 4\)

EXAMPLE 2: \ Add: \(-2) + \(-3)\)

Step 1: Find the first integer, \(-2\), on the number line.

\[\begin{array}{cccccccc}
 & & & & & & & \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

Step 2: \(-2) + \(-3)\) The second integer in the problem, \(-3\), tells us the direction to go, negative (toward the negative numbers), and how far, \(3\) places. \(-2) + \(-3) = \(-5)\)

Solve the problems below using this number line.

\[\begin{array}{cccccccc}
1. & 2 + \(-3\) = & 9. & 3 + \(-7\) = & 17. & \(-2) + 6 = \\
2. & 4 + \(-2\) = & 10. & \(-2) + \(-2\) = & 18. & \(-4) + 8 = \\
3. & \(-3) + 7 = & 11. & 6 + \(-7\) = & 19. & \(-7) + 4 = \\
4. & \(-4) + 4 = & 12. & 2 + \(-5\) = & 20. & \(-5) + 8 = \\
5. & \(-1) + 5 = & 13. & \(-5) + 3 = & 21. & \(-2) + \(-2\) = \\
6. & \(-1) + \(-4\) = & 14. & \(-6) + 7 = & 22. & 8 + \(-6\) = \\
7. & 3 + 2 = & 15. & \(-3) + \(-3\) = & 23. & 5 + \(-3\) = \\
8. & \(-5) + 8 = & 16. & \(-8) + 6 = & 24. & 1 + \(-8\) = \\
\end{array} \]
Multiplying and Dividing integers

Rules

\[a) \quad -\times-=+ \quad \frac{-4}{-2}=2 \]
\[b) \quad -\times+=- \quad \frac{-4}{-2} = 2 \]

Same signs positive, different signs negative.

\[
\begin{align*}
a) & \quad -\times-=+ \\
& \quad \frac{-4}{-2} = 2
\end{align*}
\]

The opposite of \textbf{bad} is \textit{good}

\[
\begin{align*}
-4(5) & \quad -4(-5) \\
-20 & \quad 20 \\
-4 \cdot 5 & \quad -4(-5) \\
-20 & \quad 20 \\
20 & \quad -20
\end{align*}
\]

Exponents

\[
\begin{align*}
2^5 & \quad = 2 \cdot 2 \cdot 2 \cdot 2 \\
\text{leading coefficient} & \quad = 2
\end{align*}
\]

\[
\begin{align*}
\text{leading coefficient} & \quad = 2
\end{align*}
\]

\[
\begin{align*}
(-2)^1 & \quad = -2 \\
(-2)^2(-2)(-2) & \quad = 16 \\
\end{align*}
\]

\[
\begin{align*}
b^2 + 3b, \quad \text{for } b=-2 \\
(2)^2 + 3(-2) \\
4 + 3(-2) \\
4 + (-6) \\
-2
\end{align*}
\]

\[
\begin{align*}
-5abc+1 \quad \text{for } a=-2, b=-1, \text{ and } c=3 \\
-5(-2)(-1)(3) + 1 \\
10 \cdot (-1)(3) + 1 \\
-10 \cdot (3) + 1 \\
-30 + 1 \\
-29
\end{align*}
\]
SOLVING EQUATIONS------Eliminate

\[
\begin{align*}
X - \frac{1}{3} &= 2 \\
\quad \quad \frac{1}{3} + X &= 4 \\
\quad \quad \frac{-2}{3} - \frac{2}{3} &= 3 \\
\quad \quad \frac{X}{3} &= -3 \\
\quad \quad -2 - X &= 4
\end{align*}
\]

Try:

1) \[\frac{X}{3} = -3 \]
2) \[X = -5 \]
3) \[X = 6 \]
4) \[\quad \] \[\quad \]
5) \[\quad \] \[\quad \]
6) \[\quad \] \[\quad \]
7) \[\quad \] \[\quad \]
8) \[\quad \] \[\quad \]
9) \[\quad \] \[\quad \]
\[D = rt \quad C = \frac{5}{9} (F - 32) \quad \text{profit} = \text{revenue} - \text{cost} \quad \text{Retail price} = \text{cost} + \text{markup} \]

1) Find the distance covered by a jet if it travels for 3 hours at 550 mph.

\[D = (550)(3) \quad D = 1650 \text{ miles} \]

2) Find the Celsius temperature reading if the Fahrenheit reading is \(-1\frac{3}{4}^\circ\) ?

\[C = \frac{5}{9} \left(\frac{-19}{4} - 32 \right) = \frac{5}{9} \left(\frac{-103}{4} \right) = \frac{15}{4} - 13.5 \]

3) For the month of June, a florist’s cost of doing business was $3795. If June’s revenues totaled $5,115, what was her profit for the month of June?

4) You find a shoe for $10 at a yard sale and you sell the shoe for a loss of $2. revenue?