Lecture 5
The motor system

The neuromuscular junction
- Where a neuron meets a muscle
- Acetylcholine = the neurotransmitter used
 - Nicotinic receptors
 - Ionotropic (fast acting)
 - Small stimulation typically leads to an action potential

Myasthenia gravis
- Autoimmune disorder
- Results in the breakdown of acetylcholine (ACh) receptors on the muscle fiber
- Symptoms include extreme weakness, fatigue, droopy eyelids, slurred speech, difficulty swallowing and breathing
- Treatments include medications that suppress the immune system or inhibit acetylcholinesterase (AChE)

Nicotine
- An agonist to Acetylcholine (nicotinic) receptors
- Smokers report an increase in functioning capabilities
 - Increase in auditory capabilities
 - Memory functions
- Nicotine may be a substitute for ACh but it is not a very good one
- After longer use, nicotine actually deadens the receptors
 - Reduces reflexes
 - Fine tremors

Reflexes
- Monosynaptic reflexes
 - Involves only one synapse (two neurons: sensory and motor)
- Polysynaptic reflexes
 - Involves more than one synapse (and an interneuron)

Monosynaptic reflexes
- Sensory neuron from muscle to spinal cord
- Motor neuron from spinal cord to muscle
Polysynaptic reflexes

- Use an interneuron to coordinate action
- Reciprocal inhibition
 - When one muscle is voluntarily contracted, the other is automatically inhibited

Reciprocal inhibition

The Vestibular System

- Fluid filled cavities
- Semicircular canals
- Otoliths
 - Saccule
 - Utricle
- Found near the ear and auditory structures

How the vestibular system works

- Three semicircular canals
 - Near perpendicular to each other
 - Provide a 3D representation of head angles/movements
- Otoliths
 - Provide info about the passive position of the head relative to gravity
 - Acceleration of the head as well
 - One deals with horizontal movement
 - One deals with vertical movement

Brain structures involved in the motor system

- Brainstem
 - The cerebellum
 - The basal ganglia
- Cortical structures
 - Primary motor cortex
 - Supplementary motor area
 - Premotor area
 - Prefrontal cortex
What does the cerebellum do?
- Lesion studies
 - Posture and balance
 - Produce limb rigidity
 - Problems with the timing of rapid and automated movements
 - Saccadic eye movements
 - Dysarthria
 - Motor learning
- Imaging studies
 - Linguistic processing, attention, imagining movements, emotions

The Basal Ganglia
- Three main structures
 - Caudate nucleus, putamen, globus pallidus
- Damage leads to:
 - Tremors
 - Distorted movements and positions of the limbs
 - Lack of movement
 - Slow movement
 - Depression – subcortical dementia
 - Parkinson’s disease
 - Huntington’s disease

What do the basal ganglia do?
- Most areas don’t become active until after a movement has been initiated by the cortex
 - Provides adjustments to a movement
 - Might help sequence movements
 - Parkinson’s patients have problems with sequences of movements
 - Might be about allowing the right amount of force to occur
 - Damage can also lead patients to either have too strong of movements or too weak of movements

Cortical areas
- Primary motor cortex
- Organization

Cortical areas
Primary motor cortex

- Damage does not lead to paralysis
 - May lead to problems with fine movements
 - Other cortical areas send info to the spinal cord as well, so the primary motor cortex can be "bypassed"
 - Each point of primary motor cortex connects to many muscles

Other cortical areas

- Prefrontal cortex
 - Active when initiating tasks
 - Active during the learning of a motor task
 - Not active when the task is learned

SMA

- Involved in the planning of controlled movements
- Most active during tasks that can be executed without visual feedback

Premotor areas

- Involved in the planning of movements as well
 - Especially those that require sensory guidance
 - Juggling
 - The fine coordination needed comes from the cerebellum

The work of Benjamin Libet

- Found some interesting things about somatosensation
 - Stimulated somatosensory cortex
 - Only produced a feeling by the subject if the stimulus was .5 sec or longer
 - Concluded that consciousness lags by close to ½ second
 - Touched someone’s arm
 - Stimulation of the somatosensory cortex can block the feeling of the touch
 - This stimulation can lag up to .5 sec and still block the touch feeling

Libet’s motor work

- Found that subjects decided to move before they actually moved (duh!)
 - Found that the brain was active before subjects reported the “will to move”
 - Thus the brain prepares for movements before the subject consciously decides to move
 - Suggests that unconscious brain events start the process of voluntary action
 - Highly controversial