Lecture 3
Psych 210
Drugs, Drugs, and More Drugs

Chemical Messengers

<table>
<thead>
<tr>
<th>Act on neurons</th>
<th>At one synapse</th>
</tr>
</thead>
</table>

Neuromodulators

<table>
<thead>
<tr>
<th>Act on</th>
<th>of neurons</th>
<th>May not be in the</th>
<th>of where they were released</th>
</tr>
</thead>
</table>

| Act on neurons | from their point of release | May enter blood flow |

Properties of Neurotransmitters

Must be | within the neuron |

Released in response to an | |

Can experimentally duplicate the action of a NT on a | |

There is some mechanism that will | of the NT on the postsynaptic cell |

Types of NTs

Small-molecule transmitters

Neuropeptides | of amino acids |

Small molecule NTs

Acetylcholine (ACh) |

Indoleamines |

ATP and byproducts |

Cholinergic Neurons

Use ACh as their major NT

Acetylcholinesterase

Released into the synaptic cleft to |

Found at | junctions |

Also found in the brain in lower level structures

Believed to be involved in learning and memory |

Cholinergic Neurons
Two main types

___________ receptors
 Reacts to both ACh and nicotine
 ionotopic

___________ receptors
 Reacts to both ACh and muscarine
 Found in ___________________________
 metabotropic

Action of NTs at synapse
Can be either _________ step or _________ steps
 ___________: single step
 NT binds to channels and opens them

Metabotropic receptors

 NT binds to receptor- triggers G protein to bind to _____________ and open it

Catecholamines and Indoleamines
Both are monoamines

Catecholamines

 Epinephrine

 Indoleamines

 Melatonin

How to make catecholamines
Tyrosine (an amine acid)
Turns to L-Dopa
Turns to ____________
Turns to Norepinephrine
Turns to ____________
They all have the same starting material
 They’re just different steps in the process
 Steps occur when enzymes are added to the molecules

Dopaminergic Neurons
Use dopamine
3 main pathways
 Substantia nigra-basal ganglia

 Parkinson’s disease
 Midbrain- limbic system (hippocampus, amygdala, nucleus accumbens)
May play a role in addiction

Midbrain-frontal lobe
Higher level cognitive functions
Planning behavior

Norepinephrine and Epinephrine

Act on noradrenergic and adrenergic receptors
 Named this because epinephrine used to be called adrenaline
Both are NTs and __________
Norepinephrine
 Important for ___________ and focus
 Important in sympathetic nervous system
Epinephrine
 Important for ________________
 Also important in sympathetic nervous system
Side note: ACh is the NT for the ______________ nervous system

Catecholamines

Many types of receptors
At least 5 different _____________ receptors
At least 4 different receptors that respond to both norepinephrine and epinephrine
All are _____________

Indoleamines

Tryptophan – 5HTP – Serotonin - Melatonin
Serotonin
 __________throughout the brain, few in number
 Most use ___________ receptors
 Important for sleep, mood, and __________
Melatonin
 Secreted by the pineal gland
 Acts on metabotropic receptors
 Important for ________________

Amino acid neurotransmitters

Eight identified amino acid NTs
 ___________ and ___________ most important
Glutamate is the most used ___________ NT in the CNS
GABA is the most used ___________ NT in the CNS

Glutamate

An amino acid
 Synthesized from glutamine
 Works on both __________ and __________ receptors
 3 major ionotropic receptors
AMPA
Kainate

NMDA
Both voltage dependent and glutamate dependent
Usually located near AMPA receptors
_________depolarizes the postsynaptic cell
 Raises the voltage for the NMDA receptors
_________responsible for blocking the NMDA receptors until high enough voltage
NMMDA allows both ______________________to enter
Ca^{2+} causes long term changes in the cell
 Thought to be involved in long term memory

GABA
Synthesized from __________
Two different GABA receptors
 One ionotropic, one metabotropic
Works by allowing ______to enter the cell or allowing ______to leave the cell

ATP
Involved in ______________________
Major byproduct adenosine is also a NT
Acts upon autonomic nervous system
 Vas deferens, __________, heart, gut
Frequently coexists with other enzymes
Also the bodies major source of __________

Neuropeptides
Chains of amino acids
Over 40 different types of neuropeptides that are NTs
Can be both __________and NTs
Reuptake from the synaptic cleft is quite slow
Ex. Insulin
 Involved in digestion and is also a NT

Drugs, Drugs, and More Drugs
Agonists
_________the activity of the NT
Antagonists
_________the activity of the NT
Don’t think of agonists and antagonists in terms of inhibition and excitation
An agonist to GABA __________the inhibition of the postsynaptic cell

Different Effects of Drugs
NT __________
Can reduce or enhance the amount of NT produced
Either reduces or enhances the action of that NT, respectively
If it interferes early enough, it could effect multiple NTs (ie the dopamine, norepinephrine, epinephrine sequence)

NT ___________
Can reduce the amount of NT stored
Causes less NT to be available for release

NT ___________
Can promote or prevent exocytosis (NT release)
Agonists promote
Antagonists prevent

Different Effects of Drugs
Receptor Effects
_________the action of NTs
__________: act just as the NT would, activating the receptors
__________: bind to the receptor without activating it, but blocking the NT from binding

Reuptake Effects
Reuptake __________
Attack the enzymes responsible for the deterioration of NTs in the synaptic cleft

Examples: Effects on NT Production
Increasing dairy intake leads to an increase in tryptophan levels
Leads to an increase in ___________levels

AMPT
Interferes with the activity of tyrosine hydroxylase
Leads to a decrease in the amount of ____________, norepinephrine, and epinephrine

Examples: Effects on NT Storage
Reserpine
Used to lower blood pressure
Interferes with the uptake of monoamines into ________________
Has lead to ___________
Rarely prescribed now

Examples: Effects on NT Release
Black widow venom
An ___________: leads to an increase in ACh release
Leads to overstimulation of muscle fibers and convulsions- leads to the neuron “running out” of ________________

Botulin
An ___________: leads to a decrease in ACh
Leads to paralysis
Examples: Effects on NT Receptors
Curare
Used on arrowheads and darts
Occupies nicotinic ___________receptors and leads to paralysis

Examples: Effects on NT Reuptake
Dopamine reuptake inhibitors
Cocaine, _____________, Ritalin
Serotonin reuptake inhibitors

More on this later in the class

Basic Principles of Drug Effects
Drugs may or may not have different effects depending upon their

Frequently the level of drug in the body is different based upon the method of
administration
Also, different side effects may occur
Cocaine
Ingesting may cause ________________
___________causes nasal problems, such as nose bleeds, problems
swallowing etc
___________may cause liver problems and allergic reactions

Placebo Effects
When pharmaceutical companies _____________________, must worry about placebo
effects
When patients are told they are getting a new depression drug,
______________________rise and may contribute to a lessening of the depression
(before the drug even takes effect)
Give subjects a ___________instead (sugar pills, saline)
Don’t tell subjects whether they are receiving the drug or the placebo
Controls for placebo effects

Experimenter Effects
Some doctors may view a subject as less depressed if on the drug than if not
Power of ______________
Studies are frequently run as _____________________
Neither the subject nor the experimenter knows whether the subject is getting the
placebo or the drug
Records are kept by a _____________________that doesn’t have contact with
the subjects

Tolerance
Changes in the body’s response to the drug to maintain a
ie. If a drug causes an increase in heart rate, the body may prepare for the
drug by ________________________________
This causes users to gradually increase the amount of the drug to get the
same effects

Interesting Note about Tolerance
Imagine that every day for a year you injected heroin in your arm at 5:45 outside of the
door before this class
As the year went on, you would progressively need __________________ heroin to
get the same effect (tolerance)
One day, ___________________________ and injected heroin in front of your
neighborhood McDonalds instead
There is a very high danger of ____________
Why?

Why is there a higher danger of overdose?
Because your tolerance is not just to the drug but to the _____________
Your body, when you see the classroom, begins to prepare for the drug well before you
bring out the needle
It sees the situation and knows _______________________________
Once the situation is changed, the body does not prepare itself as well, and your tolerance
is lowered
This leads to an ______________________________

Withdrawal
Similar to _____________
Occurs after a user stops using
Occurs because the body is trying to maintain a _______________________ and is
preparing for the drug (that never comes)

Addiction
Compulsive need for repeated use of the drug
Linked to __________________________
 Dopamine
 Nucleus ______________
Some drugs __________________________ this circuit
 LSD- no strong addictions usually

Addiction
Removal of __________________________ or damage to this dopaminergic circuit leads to
reductions in addiction
 Not a viable option for treating addicts
 May lead to __________________________

Treatment
Very hard to end an addiction
“Once you’re an alcoholic _________________________”
Relapses are ______________________
Multistep programs addressing many different areas seem to be _________________

Treatments

__________ are being developed to try and help addicts
may cause __________________ when addict takes the drug
 Unpleasant effects become ___________________________ and the addict quits
May __________________________ from working
 The addict ______________ in taking the drug

Types of Psychoactive Drugs

Stimulants

Alcohol

Stimulants

Typical Effects
 Increase ______________
 Increase blood pressure
 Increase ________________
 Increase concentration
 Increase ________________

Stimulants

Caffeine!!!!
 Mechanism not completely understood
 ______________ to adenosine
 Adenosine is an _______________________
 Causes a slowing down of neuronal response
 ACh and dopamine neurons
 May cause an increase in reward feelings, arousal, and reaction time
 Caffeine use is actually correlated with decreases in __________________________

Stimulants

Nicotine
 Acts upon ___________________________________
 50% of cigarettes consumed are by people with mental disorders
 May be __________________________
 May also be that ________________________ to mental disorders

Implications of Smoking on Nicotinic Receptors

An ________________ receptor
 Smokers report an increase in functioning capabilities
Increase in _______________
Memory functions
Nicotine may be a substitute for ACh but ____________________________
After longer use, nicotine actually ____________________________

Stimulants

Cocaine
 Works as a ____________________________
Amphetamine
 Stimulates dopamine and norepinephrine (at dopaminergic neurons) release and

Very addictive: due to their power on the ____________________________
 A single dose could cause addiction in mice
May lead to ____________________________
 May be due to an overstimulation of the sensory systems

Stimulants

Ecstasy
 Aka __________
 Relative to amphetamine
 Stimulates the release of ____________________________
 ________________ serotonin synapses and may lead to the death of serotonin
 receptors
 Since serotonin is one of the main mechanisms for happiness, prolonged
 ecstasy use leads to ________________

Effects of ecstasy on the brain

GET FROM BAW LECTURE

Opiates

Typical Effects

 Relaxation

 Endorphines
Natural opiates

Morphine

Mechanisms of action are unclear
 Opiates have their own receptors
Recent evidence points to increasing the ____________________________
 Leads to feelings of ____________________________
When coupled with magnesium, ________________ appear to be blocked
 MAY lead to the pain relieving effects found
__________________________ is a relative to morphine
 Has similar effects
Not quite as strong

Heroin
Heroin is actually a ____________
 It is inactive as a drug in its ______________
Once in the body, it is metabolized into ____________

Hallucinogens
Marijuana
 A ______________ at high levels
 May cause excitation and euphoria or ______________
 Contains over sixty different psychoactive substances
Amanita Mushrooms

Lysergic Acid Diethylamide
 Similar to ______________
 Produces feelings of pleasure
 Mechanism for hallucinations not understood

Alcohol
 ____________ blood vessels
Relieves anxiety
Reduces ______________
Works at ______________ receptors, ____________ receptors, NMDA receptors
Tolerance develops very quickly
Great effects in the ____________
 Leads to movement deficits

Presence and severity of characteristic withdrawal symptoms
 ____________: A measure of the substance's ability, in human and animal tests, to get users to take it again and again, and in preference to other substances.
 ____________: How much of the substance is needed to satisfy increasing cravings for it, and the level of stable need that is eventually reached.
 ____________: How difficult it is for the user to quit, the relapse rate, the percentage of people who eventually become dependent, the rating users give their own need for the substance and the degree to which the substance will be used in the face of evidence that it causes harm.
 ____________: Associated with addiction and increases the personal and social damage a substance may do.